
The Microsoft® Windows® Guidelines for Accessible
Software Design

Designing and Building Applications That Are Usable by
People with Disabilities

Please send comments or suggestions to:
Accessibility and Disabilities Group
One Microsoft Way
Redmond, WA 98052-6399

©1993, 1994, 1995 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Visual Basic, Win32, and Windows are registered
trademarks, and MSN and Windows NT are trademarks of Microsoft
Corporation.

TrueType is a registered trademark of Apple Computer, Inc.

CompuServe isa registered trademark of CompuServe, Inc.

GEnie is a trademark of General Electric Corporation.

The information contained in this document represents the current view
of Microsoft Corporation on the issues discussed as of the date of
publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part
of Microsoft, and Microsoft cannot guarantee the accuracy of any
information presented after the date of publication.

This document is for informational purposes only. MICROSOFT
MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Contents i

Introduction to Accessibility 1

Background About the Accessibility Issue 1

Using This Accessibility Document 1

Summary of Recommendations 2

Background Information About Accessibility 7

Reasons for Considering Accessibility 8

Categories of Disabilities 9

Making Computers Accessible 11

Types of Accessibility Aids 12

Designing Accessible Applications 14

Keyboard Access 15

Choosing a Keyboard Interface 16

Providing Access Keys 17

Using a Logical Keyboard Navigation Order 19

Documenting the Keyboard Interface 19

Limitations of Keyboard Access 19

Supporting the Keyboard Preference Flag 20

Use of the GetAsynchKeyState Function 20

Visual Focus 21

Moving the System Caret 21

Determining the Keyboard Focus 22

Controls and Menus 24

Standard Windows Controls 24

Owner-Drawn Controls 25

Superclassed Standard Controls 25

Custom Controls 26

OLE Controls 27

Owner-Drawn Menus 27

Using Appropriate Controls for Displaying Information 29

Drawing Operations 30

Drawing Using the Standard Windows Functions 30

Identifying Separate Screen Areas 32

Identification of Windows 33

Contents
11

Identifying Windows for the User 33

Identifying Windows for Accessibility Aids 34

Timing and Triggering Events 34

Adjusting General User Interface Timings 34

Message Time-outs 35

Flashing 35

Triggering of Events by Mouse Pointer Location 36

Triggering of Events by Keyboard Focus Location 36

Color 37

Customizing Color 37

Conveying Information by Color Alone 38

Using Standard System Colors Where Appropriate 38

Using Colors in Proper Combination 39

Making Custom Colors Customizable 39

Coloring Graphic Objects 40

Preventing Backgrounds from Obscuring Text 41

High Contrast Mode 41

Size 42

Selectable Font Sizes 42

Providing Alternatives to WYSIWYG 43

Scaling Nondocument Regions 44

Compatibility with System Screen Metrics 45

Line Width 45

Global Scaling 45

Adjusting Images for Different Sizes 46

Sound 47

Supporting the ShowSounds Flag 48

Turning Ofr Sounds 50

Supporting System Sound Events 50

Defining Application-Specific Sound Events 51

Layout 51

Attaching Textual Labels to Controls and Graphic Objects 51

Labeling Icons 52

iii Contents

Labeling Controls Clearly :- 53

Positioning Related Items near Each Other 54

Using Consistent and Expected Screen Layouts 55

Spacing for a Specific Font.. 55

Optional Ease-of-Use Features 56

Providing Mouse Access to Common Features 56

Using Only Simple Mouse Operations 56

Reconfiguring Commands and Dialog Boxes 56

Making Graphical Decorations Optional 57

Verification of an Application's Accessibility 57

Testing for Compatibility with Accessibility Aids 57

Including Accessibility Sites in Beta Tests 58

Including Users with Disabilities in Usability Testing 58

Comparing Against the Accessibility Guidelines 58

Try It Out! 58

Appendix A: Additional Resources 60

General Resources 60

Additional Accessibility Guidelines 61

Customizing for a Specific Operating System 61

Appendix B: Documentation, Packaging, and Support 64

Providing Documentation in Alternative Formats 64

Conveying Information with Text and Graphics 65

Making Diskettes Easily Identifiable 65

Making Packaging Easy to Open 66

Providing Customer Support through Text Telephone and Modem 66

Binding Documents to Lie Flat.. 66

Appendix C: Windows Version 3.x Guidelines 67

Yielding Control to Background Applications 67

Colors in Online Help 67

Testing Accessibility Flags 68

1 The Microsoft Windows Guidelines for Accessible Software Design

Introduction to Accessibility
Personal computers are powerful tools that enable people to work,
create, and communicate in ways that might otherwise be difficult or
impossible. The vision of making computers easier for everyone to use,
however, can only be realized if people with disabilities have equal
access to personal computing.

Background About the Accessibility Issue
Computer accessibility is becoming an increasingly important issue in
the home and workplace. An estimated eight out often major
corporations employ people with disabilities who may need to use
computers as part of their jobs. Over 30 million people in the U.S. alone
have disabilities that can be affected by the accessibility of computer
software. In addition, as the population ages, more people experience
functional limitations, causing computer accessibility to become a more
important issue for everyone.

Legislation in the U.S., such as the Americans with Disabilities Act
(which affects private businesses with more than 15 employees) and
Section 508 of the Rehabilitation Act (which affects the federal
government and organizations that receive government funding), has
also brought accessibility issues to national attention in both the public
and private sectors. Accessibility is also being incorporated into official
and international standards for usability, such as ANSI 200.

Microsoft«l Windows«l 95 incorporates many new features and
enhancements designed to make the operating system more accessible
to people with disabilities. Applications should also follow accessible
design practices to make computing in the home, schools, and
workplace more accessible to everyone.

This document discusses how computers can be made accessible for
people with disabilities and describes how to design and produce
computer software that accommodates users with disabilities.

Using This Accessibility Document
This document contains the following sections:

The Microsoft Windows Guidelines for Accessible Software Design 2

u A summary of accessibility features and programming techniques.

u Background information about disabilities and accessibility aids.

u Detailed descriptions of features and programming techniques that
make applications more accessible or compatible with accessibility
aids.

u A list of additional resources for information about accessibility aids
and their manufacturers.

u Guidelines for developing applications for Windows version 3.x so
that they are more accessible.

The guidelines discussed in this document are not hard and fast rules.
However, it is recommended that you adapt or adopt as many as you can
to your own applications, or find additional ways to achieve the same
goals.

Product designers often start by asking which of the guidelines are the
most important, but as a designer, you should determine this yourself
based on the current state of your application. First. determine which of
the areas your application is already handling correctly and which
remain problems. Then decide which problems you can address in the
version of your application currently under development. Finally, when
you start on the next version of your application, design in corrections
to any remaining problems. In this way. you can demonstrate your
desire to do "the right thing" in the near term and make a considerable
difference in the long term.

Summary of Recommendations
The following lists provide a convenient summary of recommended
accessibility features and programming techniques. For detailed
explanations of the individual recommendations, see the later sections
of this document.

Basic Principles
You should follow these basic principles when designing an accessible
application:

3 The Microsoft Windows Guidelines for Accessible Software Design

u Provide a flexible, customizable user interface for your application
that can accommodate the user's needs and preferences. For example,
you should allow the user to choose font sizes, reduce visual
complexity, and customize the arrangement of menus.

u Make your application's behavior consistent with other Windows­
based applications and with system standards. For example, you
should support Control Panel settings for colors and sizes and use
standard keyboard behavior.

u Support the user's choice ofoutput methods through the use of sound
and visuals and of visual text and graphics. You should combine
these output methods redundantly or allow the user to choose his or
her preferred output method.

u Support the user's choice of input methods by providing keyboard
access to all features and by providing access to common tasks using
simple mouse operations.

u Use programming techniques and user-interface elements that are
compatible with accessibility aids, such as blind access, screen
magnification, and voice input utilities.

Keyboard Access
Providing a good keyboard interface is key to designing an accessible
application. You should follow these guidelines when implementing
keyboard access in your application:

u Provide keyboard access to all features.

u When possible, model your keyboard interface on a familiar
application or control.

u Provide access keys for all menu items and controls.

u Use a logical keyboard navigation order.

u Fully document your keyboard user interface.

u If you normally hide some keyboard user interface elements, display
them when the Keyboard Preference flag is set.

u Avoid using the GetAsynchKeyState function; use alternatives
instead, such as the GetKeyState function.

The Microsoft Windows Guidelines for Accessible Software Design 4

Visual Focus
Many accessibility aids need information about the visual focus
location. To ensure that this information is available to accessibility
aids, you should follow this guideline:

u If you draw the keyboard or visual focus indicator, move the system
caret invisibly to track its location.

Controls and Menus
Many accessibility aids require information about controls and menus.
You should follow these guidelines when planning an application for
use with those aids:

u Use standard controls whenever possible.

u Define correct text labels for standard and owner-drawn controls,
even if they will not be visible.

u Include the original class name in the name of a superclassed
standard control.

u If you use custom controls, make them OLE Controls or identify
them using tooltip controls or invisible text.

u If you use custom controls, support the WM_GETDLGCODE
message to identify your control type and keyboard interface.

u If you use owner-drawn menus, provide a textual alternative.

u Display text using the appropriate read-write edit, read-only edit,
status, or static controls.

Drawing Operations
Many accessibility aids need to track Windows drawing operations.
You should follow these guidelines to ensure compatibility with those
aids:

u Draw text using standard graphics device interface (GDI) functions
for text output, such as ExtTextOut.

u If you use DirectDraw, Display Control Interface (DCI), WinG, or
other means of bypassing GDI drawing functions, provide an option
that allows the GDI functions to be used instead.

5 The Microsoft Windows Guidelines for Accessible Software Design

u Label any bitmapped text using tooltip controls or draw the name
invisibly when a screen review utility is present.

u Copy and erase text and graphics using standard GDI functions, such
as BitBlt, PatBIt, and StretchBlt, rather than modifying memory
directly.

Identification of Windows
The following guidelines should be followed when identifying windows
for users and accessibility aids:

u If you display a single image representing several objects, identify
the separate areas using tooltip controls or by drawing invisibly.

u Provide user-friendly titles for all windows, even if the title is not
visible.

u Give functionally unique windows unique window classes.

Timing and Triggering Events
The following guidelines should be followed for timing and navigation:

u Make all user interface timings adjustable or optional.

u If you have messages that time out, allow the user to turn off the
time-out behavior.

u Flash text and objects only at the caret blink rate.

u Avoid triggering actions or messages by mouse pointer location.

u Avoid triggering actions or messages by keyboard focus location.

Color
Color is useful to enhance, emphasize, or reiterate information. To
ensure that color works for users, you should follow these guidelines:

u Avoid conveying information by color alone or provide an option to
convey the information also using text or graphics.

u When screen elements correspond with standard elements, use the
system colors chosen in Control Panel.

..-_ .. _---._. -----------_.

The Microsoft Windows Guidelines for Accessible Software Design 6

u When screen elements do not correspond with elements in Control
Panel, allow the user to customize the colors.

u Make sure graphic objects are drawn to contrast with the current
background color.

u If you display complex backgrounds behind text or objects, allow the
user to select a plain background.

u If you use private colors or complex backgrounds, omit them when
the High Contrast Mode flag is set.

Size
The size of text and graphics affects usability as well as accessibility.
These guidelines should followed to ensure that type size is not a
problem for users:

u Allow the user to select font sizes for displayed information.

u If feasible, provide a zoom feature.

u Draw objects using the sizes (screen metrics) selected in Control
Panel.

u If you draw lines, determine the proper width rather than using a
fixed value.

u Make sure you test display scaling ratios using the Custom Font Size
feature.

Sound
Sound should not be the sole means of conveying information. These
guidelines should be followed to ensure that sound is used effectively:

u If you provide information by sound alone, present it visually when
the ShowSounds flag is set.

u If you generate sounds, provide a way to turn them off.

u Support system sound events, which play optional sounds when the
corresponding actions are carried out.

u Define and use as many application-specific sound events as
possible.

\

7 The Microsoft Windows Guidelines for Accessible Software Design

Layout
These guidelines should be followed to improve the layout of an
application for accessibility:

u Attach text labels unambiguously to controls.

u Attach labels to icons when possible or label icons with tooltip
controls.

u Try to label controls clearly without relying heavily on context.

u Use consistent screen layouts following Windows user interface
guidelines.

u Avoid designing to a specific font.

Optional Ease-of-Use Features
Although not required, the following features are recommended as
additional ways to make your application more usable:

u Provide single-click access to as many features as possible and avoid
requiring the user to drag, double-click, or use mouse button 2.

u If possible, allow users to customize key commands, menus, and
dialog boxes.

u If possible, allow the user to hide graphical decorations so that
distractions are reduced.

Verification of an Application's Accessibility
These guidelines should be followed to ensure that an application is
truly accessible:

u Test for compatibility with common accessibility aids.

u Include people with disabilities and software vendors in your beta
tests.

u Include people with disabilities in your usability tests.

u Determine where your application does or does not follow
accessibility guidelines.

Background Information About Accessibility

The Microsoft Windows Guidelines for Accessible Software Design 8

The following sections provide background about accessibility,
including the different types of accessibility aids available and the basic
principles underlying accessibility design.

Reasons for Considering Accessibility
Accessibility should be included as part of your application
development process for many reasons:

u The potential market is large. There are approximately 49 million
people with disabilities in the U. S.; of these people, an estimated 30
million have disabilities that can be affected by the accessibility of
computer software. If the international market is included in the
totals, the numbers are much higher.

u When you build accessible applications, you are not just targeting
people with disabilities, but also their family and friends, their
coworkers, and their employers. Large organizations today employ
people with disabilities and expect their mainstream computer
applications to accommodate all members of their staff. Failing to
meet the needs of a relatively small group of users can affect sales to
a large organization.

u Legislation requires employers to make reasonable accommodation
for employees with disabilities. The Americans with Disabilities Act
affects private businesses with 15 or more employees, and section
508 of the Rehabilitation Act affects the federal government and
organizations that receive government funding.

u Accessibility is being incorporated into official and international
standards for usability, such as ANSI 200.

u Many people develop permanent or temporary disabilities through
injury or disease. Repetitive stress injury caused by typing or using a
mouse is increasingly common in the computer industry, and as the
population ages, more people are likely to experience periods of
disability. By age 55, a person has a 25% chance of spending a
significant period of time with a serious disability, and the chances
increase to 75% by age 70.

u Accessible design actually improves usability for everyone, not just
people with disabilities. It helps make applications compatible with

9 The Microsoft Windows Guidelines for Accessible Software Design

future interface technologies, such as voice recognition. The same
techniques that allow applications to be compatible with accessibility
aids also help with other forms of application integration, such as
compatibility with automated testing tools and other scripting or
macro facilities.

Of course, many people believe that accessibility is the right thing to do
to allow each individual to live independently and to make his or her
maximum contribution to society.

Categories of Disabilities
Individuals are not disabled-rather some people have difficulties
performing certain tasks, such as using a mouse or reading small print.
When these limitations are serious enough to impact the person's
performance, they are referred to as "disabilities." Disabilities can be
divided into the following general categories:

u Visual impairments

u Hearing impairments

u Mobility impairments

u Cognitive and language impairments

u Seizure disorders

u Speech impairments

These categories describe groups ofdisabilities covering a broad range
of people with widely different levels of need.

Visual impairments
Visual impairments range from slightly reduced visual acuity to total
blindness. Millions of people have vision that is only slightly impaired.
They find it difficult to read small print or black text on a gray
background, or they experience eyestrain at the end of long computing
sessions. These individuals usually do not consider themselves to have a
disability.

People whose vision cannot be corrected to better than about 20/80 are
described as having low vision. They probably require text to be larger
than normal, and they often require a higher contrast between

The Microsoft Windows Guidelines for Accessible Software Design
10
foreground text and the background. When people's vision cannot be
corrected well enough to rely on visual information alone - that is,
about 20/200 or higher - they are generally considered to be blind and
require displayed information to be converted into spoken text or
Braille.

Other types of visual impairments include reduced field of vision, a
condition that limits a person's focus to only a small area at time, and
color blindness, a condition that makes it difficult or impossible for a
person to distinguish certain color combinations. Color blindness affects
nearly 10% of males and 1% of females.

Hearing impairments
Some people cannot hear or distinguish different beeps, or recognize
spoken words. They may require a program to prompt them in a
different manner-for example, through a screen flash or spoken
messages displayed as text. Other people can find themselves in this
situation when working in a very noisy environment, working in a quiet
environment (such as a library) where sound would disturb other
people, or working on a machine with broken or missing speakers.

Mobility impairments
Some users are unable to perform certain manual tasks, such as using a
mouse or typing two keys at the same time. Others may have a tendency
to hit multiple keys, "bounce" fingers offkeys, or be unable to hold a
printed book. Many users need keyboards and mouse functions to be
adapted to their requirements, or they rely exclusively on a single input
device.

Cognitive and language impairments
Cognitive impairments take many forms, including short- and long-term
memory loss, perceptual differences, and conditions such as Downs
syndrome. Language impairments, such as dyslexia or illiteracy, are
also very common. Even people learning the language used by their
computer software as a second language can be considered to have a
form of language impairment. Proper software design can help increase

II The Microsoft Windows Guidelines for Accessible Software
Design
the number of people with mild cognitive and language impairments
who can use computers.

Seizure disorders
People with some forms of epilepsy may experience minor or severe
seizures when they see visual signals flash at certain rates or hear
certain types of random or repetitive sounds.

Speech impairments
Although difficulty speaking does not normally affect a person's ability
to use a computer today, it can be a problem in using
telecommunications and voice menus. Difficulty speaking may affect
normal computer usage more if voice recognition becomes a common
form of input in the future.

Making Computers Accessible
Accessibility means designing computer software to accommodate a
wide range of users, including users with disabilities. Although no
software can be accessible to everyone, a few simple steps can greatly
increase the number of people who can use an application. Special
needs can be addressed in the following ways:

u New features can be built into hardware and operating systems that
help make them more accessible to users with and without
specialized needs. This solution is preferred because the features are
available on all workstations and can be used with all "well-behaved"
applications (that is, applications that follow standard programming
practices and implement the guidelines described in this document).
However, some issues cannot be addressed at a system level.

u Accessibility aids can modify the system making it usable by more
people. These aids work with all well-behaved applications, but they
are not available when the user moves to a new computer. In
addition, many people who could benefit from such aids never obtain
them.

u Specialized applications, such as word processors, can be designed to
integrate voice and text to help individuals with limited reading and

The Microsoft Windows Guidelines for Accessible Software Design
12

writing skills. A few of these applications are available, but in
general, people with disabilities need to use mainstream applications
to cooperate with their coworkers and to take advantage of the latest
mainstream features.

u Usability features can be built into mainstream applications, making
them easier for people with disabilities to use. Examples include
customizable colors and access keys, which can only be provided by
the application itself. Often, these features also benefit people who
do not have disabilities. Mainstream applications can also be made
compatible with accessibility aids.

Types of Accessibility Aids
The following sections describe some of the more common types of
accessibility aids-utilities that are added to a computer to make it more
accessible to people with certain disabilities. Not all people with
disabilities use tools like these, but being familiar with them and how
they work can help you to design and build applications that work well
with them.

Screen enlargement utilities
A screen enlarger (also called a screen magnifier or large print program)
is a utility that allows the user to magnify a portion ofhis or her screen,
effectively turning the computer monitor into a window that shows a
portion of an enlarged virtual display. The user can use mouse or
keyboard commands to move the window to view different areas of the
virtual display. An enlarger needs to track where the user is working, so
it can automatically keep the active area in view.

Screen review utilities
People who are blind use the computer with the aid of a screen review
utility (also called a blind access utility or screen reader). A screen
review utility takes the information displayed visually on the screen and
makes it available through alternative, nonvisual media, such as
synthesized speech or a refreshable Braille display. Because both of
those media present only text, not graphics, the utility needs to render
screen elements as text-for example, by assigning a user-friendly

13 The Microsoft Windows Guidelines for Accessible Software
Design
name to each graphic object. The utility also needs to track what the
user is doing and the location of the focus to be able to describe the
important aspects of what is happening on the screen.

In Windows and other graphical environments, a screen review utility
works by watching all operations that draw information to the screen.
Then it builds up an "off-screen model," a database of objects on the
screen, their properties, and their spatial relationships. Some
information will be automatically read to the user when it changes on
the screen, and other information will be found when the user requests
it. A screen review utility often accepts configuration files (also called
set files or profiles), which tell it how to work correctly with particular
applications.

Voice input utilities
People with severe mobility impairments will often use a voice input
utility (also called a speech recognition program) to control the
computer with their voice instead of the mouse and keyboard. This kind
of utility is also increasingly being used to boost productivity of people
who do not have disabilities.

Like a screen review utility, a voice input utility tries to identify objects
on the screen that can be manipulated and to determine appropriate
names for them so that the user can activate an object with a single
phrase. It also needs to be able to manipulate controls programmatically
and be able to detect what the user is doing and the changes that result.

On-screen keyboards
Some people with motion impairments cannot use a standard keyboard,
but they may be able to use another input method, such as a switch or a
pointing device. An on-screen keyboard is a utility that displays a list of
commands to the user and allows him or her to choose and execute the
commands using a variety of input methods. A common use of this
technique is to display a set of keys that the user can point and click on
to type into the computer. Variations of this technique include Morse­
code input systems and single- or double-switch input systems.

If a single-switch system is used, an on-screen keyboard successively
highlights groups of commands until the user selects one group by

The Microsoft Windows Guidelines for Accessible Software Design
14
pressing a switch. Then the utility successively highlights smaller
groups of commands within the selected group until the user selects the
specific command to run. If a user can point but not click, he or she can
activate a command using a head pointer by pausing the pointer over the
<:ommand for a certain amount of time.

An on-screen keyboard is also commonly used to display buttons with
all the commands available at a given time. To display them, the utility
needs to identify, name, and activate controls much the way a voice
input utility does.

Keyboard filters
Impaired dexterity may make it difficult for a person to use a standard
keyboard, but keyboard filters built into Windows 95 compensate
somewhat by correcting for erratic motion, tremors, slow response time,
and similar conditions. In most cases, however, it is not possible to
apply the same corrections to pointing devices, such as the mouse, so
users with impaired dexterity are restricted to keyboard input. Other
types of keyboard filters include typing aids, such as word prediction
and abbreviation expansion utilities, and add-on spelling checkers.
These typing aids are also increasingly being used to improve the typing
speed and accuracy of users who do not have disabilities.

Designing Accessible Applications
The remaining sections of this document describe specific guidelines
that can be used when designing a mainstream application for use by
individuals with disabilities. The guidelines fall into two categories:
end-user features that make the application more usable and
programming techniques that make the application compatible with
accessibility aids. The following sections expand on the lists provided
earlier in this document.

It is impossible for any written guidelines to cover every situation, so it
is worth restating the basic principles that underlie accessible design:

u Provide a flexible, customizable user interface for your application
that can accommodate the user's needs and preferences. For example,

15 The Microsoft Windows Guidelines for Accessible Software
Design

you should allow the user to choose font sizes, reduce visual
complexity, and customize the arrangement of menus.

u Make your application's behavior consistent with other Windows­
based applications and with system standards. For example, you
should support Control Panel settings for colors and sizes and follow
standard keyboard behavior.

u Support the user's choice of output methods through the use of sound
and visuals and of visual text and graphics. You should combine
these output methods redundantly or allow the user to choose his or
her preferred output method.

u Support the user's choice of input methods by providing keyboard
access to all features and by providing access to common tasks using
simple mouse operations.

u Use programming techniques and user-interface elements that are
compatible with accessibility aids, such as blind access, screen
magnification, and voice input utilities.

By keeping these principles in mind and by following the specific
recommendations in this document, you should be able to address most
issues encountered when designing an application for accessibility.

Keyboard Access
An application should be designed so that a mouse is not required for its
use. Providing a good keyboard interface is actually one of the most
important and most visible aspects of software accessibility. It is
important because it affects users with a wide range of disabilities. For
example, a keyboard interface may be the only option for users who are
blind, who use voice input or keyboard macro utilities, or who cannot
use a mouse. (The accessibility options in Windows 95 can often
compensate for problems involving the keyboard, but it is more difficult
to handle problems relating to pointing devices. Although Windows
supports movement of the mouse pointer using the keyboard, this
technique cannot be used by everyone, and it is extremely cumbersome
at best.)

In addition to accommodating people with disabilities, there are many
other reasons for providing a good keyboard interface. Many

The Microsoft Windows Guidelines for Accessible Software Design
16
experienced typists do not like to take their hands off the keyboard to
use a mouse. In addition, pointing devices on many laptop computers
can be inconvenient to use, and a working mouse may not always be
available.

Choosing a Keyboard Interface
The key to defining a good keyboard interface is to adapt models
already familiar to the user. To accomplish that, you should make the
interface keystroke-compatible with other familiar applications or
controls.

Here are some examples showing how the user can move and resize
objects using the keyboard:

u Menus and Dialog Boxes. Menus are one of the most common and
standardized user interface elements. Putting commands on the menu
is always a safe option. However, doing so consistently may make
menus large and unwieldy. To prevent these types of problems, you
can provide a default configuration that hides most of the menu items
for your application's commands and only shows them when the user
explicitly requests them through an option in your application or
when the user sets the Keyboard Preference flag in Control Panel
(discussed later in this document). It is usually possible to provide
dialog boxes or property sheets with the same functionality used by
the mouse.

u Property Sheets. The user can directly manipulate controls to adjust
their location and size using the object's property sheet. This method
is used by the Microsoft Visual Basic@ programming system.

The following examples show some navigational techniques that you
may be able to adopt and adapt to your application:

u Move and Size Commands. Most windows have Move and Size
commands on their system menu, which enable the user to perform
those operations using the keyboard. The same commands with the
same user interface can also be provided for application-specific
objects, either on the normal menu bar or on the object's context
menu.

....
17 The Microsoft Windows Guidelines for Accessible Software
Design
u Navigating Between Objects. Windows Help uses a common

method for navigating between objects. Windows Help allows the
user to press the TAB key to move the focus through a list of "hot
spots" or active regions, and to press the ENTER key to choose the
currently selected active region. The SHIFT+TAB key combination is
used to move backwards through the list, and arrow keys are used to
move in specific directions (this capability is especially useful if the
items are arranged in two dimensions). An application using this
method can also allow the user to type one or more letters to move to
the next active region whose label starts with those letters, much like
the user can move through entries in a standard list box.

u Navigating Between Window Areas. Some applications divide their
window into two or more panes, separate areas showing different
information that the user can move between using a simple
keystroke. For example, Windows Explorer can display a single
window with three panes. The TAB key or the SHIFT+TAB key
combination moves the focus between the panes (that is, the tree
view pane, the folder pane, and the tool bar), and the arrow keys
move the focus around within a pane. Multiple Document Interface
(MOl) follows another convention, the use of the F6 key and the
CTRL+F6 key combination to move the focus between panes and child
windows; it also presents a list of windows and allows the user to
move between them using the Windows menu.

Some applications use the CTRL+TAB or CTRL+PAGE DOWN key
combination to shift through groups of panes or pages.

Providing Access Keys
Underlined letters on a menu or control, known as access keys (also
called shortcut keys or quick-access characters), should exist for all
menu items and controls.

The following illustration shows some access keys on a File menu.

The Microsoft Windows Guidelines for Accessible Software Design
18

Access keys

Once users become familiar with an application, they become more
likely to use access keys to speed up common operations. This tendency
is even more common among users who do not use a mouse, including
those who are blind. For example, screen review utilities present the
user interface sequentially, so a user has to press the TAB key and read or
listen to find out what he or she has reached before deciding whether to
press the TAB key again. This mechanism slows down the process of
locating the correct destination and makes use of access keys much
more attractive.

You can omit access keys in these two situations:

u There are not any unused characters in the label to use. In this case,
you can either rename the control or omit the access key, depending
on how often or how repetitively the command will be used. An
example is the standard Sort Options dialog box; it has identical sets
of controls for each of the three sort criteria, which makes it difficult
to assign unique access keys to each.

u The set of commands is very dynamic and cannot be predicted by the
user. For example, the standard OK, Cancel, and Apply buttons used
in all property sheets cannot be allowed to conflict with controls on a
particular page. Because there is no way to predict what controls
might be on a page, access keys are not provided for the standard
buttons. Another example is a context menu whose commands might
vary from one instance to another. Context menu commands can
have access keys when it is clear they will not conflict, but they can
be omitted when they might conflict with each other or when the user
might expect a letter to be associated with one command and find,
unpleasantly, that in a particular instance it triggers another.

Another benefit of providing access keys for dialog box controls is that
it ensures that a static text control immediately precedes the object it is

I
I..-

19 The Microsoft Windows Guidelines for Accessible Software
Design .
labeling in the tab order; this ordering helps screen review utilities
determine the relationship between the control and its object.

Using a Logical Keyboard Navigation Order
A logical keyboard navigation order should be used to ensure that
dialog boxes and similar groups of objects can be traversed in a logical
order using the keyboard, normally from right to left and top to bottom.
If the order does not follow this convention, it can be very confusing to
users who navigate using the keyboard. It is especially confusing for
people who are blind and rely on screen review utilities. Users who are
blind explore a dialog box sequentially, instead of scanning the entire
box as sighted users would, so random tab order can make the dialog
box nearly unusable.

Documenting the Keyboard Interface
Complete documentation for the keyboard user interface should be
included with an application. If an application provides keyboard
commands and mechanisms, but lacks appropriate documentation for
them, the features become essentially useless. If space is a problem, the
keyboard interface can be described in another place, and cross­
references to the information can be included in the primary
documentation. However, keyboard access should not be categorized as
a niche or specialty feature, because it is used and relied on by so many
people.

Limitations of Keyboard Access
Usable keyboard access should be provided for all features in an
application. However, it may not be feasible sometimes. In some cases,
it might be too cumbersome for users to use and too challenging for the
application designers to implement, especially if the particular feature
being considered will be used only occasionally. There are also rare
cases where a dialog box is so complex that unique access keys cannot
be assigned. In these cases, common sense should dictate where
tradeoffs need to be made.

The Microsoft Windows Guidelines for Accessible Software Design
20
Users can always fall back on tools that enable them to simulate mouse
input using the keyboard or other input mechanism, but these tools
should not be considered a substitute for good keyboard interface
design. For example, a simple drag and drop operation might require 40
or more keystrokes. Operations using that many keystrokes might make
an application accessible, but it would certainly not be considered
usable or user-friendly. In any case, a user who is blind might still find
it difficult to perform such a visual operation using keystrokes.
Application designers can design efficient, comprehensive keyboard
interfaces for their applications and should make every effort to do so.

Supporting the Keyboard Preference Flag
An application that normally hides some keyboard user interface
elements or omits some keyboard mechanisms altogether should present
them when the Keyboard Preference flag is set. This flag, which is set
by the user in Control Panel, advises an application that the user relies
on the keyboard rather than a pointing device, so additional support
should be provided where appropriate. An application can test for this
flag by calling the SystemParametersInfo function with the
SPI GETKEYBOARDPREF value.

Use of the GetAsynchKeyState Function
The GetAsynchKeyState function should not be used to retrieve the
state of a key or a mouse button, except when absolutely necessary. This
function queries the hardware driver to determine the physical key or
button state, but ignores any keys being artificially held down or
simulated by accessibility aids. When possible, you should use the
GetKeyState function, which correctly reflects any simulated input.
GetAsynchKeyState can, however, be called in certain cases, such as
when the user types a key to interrupt a lengthy processing task.

When handling mouse drag operations, you should avoid using
GetAsyncbKeyState to detect when a mouse button has been lifted.
Instead, you should use the SetCapture function and wait for a button­
up message. If you use GetAsyncbKeyState, the results might differ
from those obtained using other Windows functions and messages. This

